Exponentiated Weibull Distribution
Definition
The Exponentiated Weibull distribution is obtain by exponentiating the cdf of the Weibull distribution. This simple transformation adds a second shape parameter that, interestingly, induces a lot of flexibility on the hazard function. The hazard function of the Exponentiated Weibull distribution can capture the basic shapes: constant, increasing, decreasing, bathtub, and unimodal, making it appealing for survival models.
The probability density function and cumulative distribution function of the Exponentiated Weibull distribution are respectively given by:
\[\begin{split} f(t) &= \alpha \dfrac{\kappa}{\lambda} \left(\dfrac{t}{\lambda}\right)^{\kappa-1} \left[1-\exp\left\{-\left(\dfrac{t}{\lambda}\right)^{\kappa}\right\}\right]^{\alpha-1} \exp\left\{-\left(\dfrac{t}{\lambda}\right)^{\kappa}\right\}, \\ F(t) &= \left[1-\exp\left\{-\left(\dfrac{t}{\lambda}\right)^{\kappa}\right\}\right]^{\alpha}, \end{split}\]
where $t>0$, $\alpha>0$, $\lambda>0$, and $\kappa>0$. The parameter $\lambda$ is a scale parameter, $\kappa$ is a shape parameter, and $\alpha$ is the power (shape) parameter.
Examples
Let us sample a dataset from an Exponentiated Weibull distribution:
using SurvivalDistributions, Distributions, Random, Plots, StatsBase
Random.seed!(123)
D = ExponentiatedWeibull(0.25, 0.5, 5)
sim = rand(D,1000);
1000-element Vector{Float64}:
9.765271462065016
13.7837598460054
101.97641758285445
1.2847442353531975
9.99578064534659
4.838506975877864
0.17656401895523055
169.41690560685615
13.336290531528054
3.345811394332756
⋮
0.5899401809183444
1131.2001975660924
227.44425919326252
57.609454946022126
5.098260392504398
134.72464474364648
1250.872530553925
24.62918690981065
1.0273374308774073
First, let's have a look at the hazard function:
plot(t -> hazard(D,t), ylabel = "Hazard", xlims = (0,10))
Then, we can verify the coherence of our code by comparing the obtained sample and the true pdf:
histogram(sim, normalize=:pdf, bins = range(0, 5, length=30))
plot!(t -> pdf(D,t), ylabel = "Density", xlims = (0,5))
We could also compare the empirical and theroetical cdfs:
ecdfsim = ecdf(sim)
plot(x -> ecdfsim(x), 0, 5, label = "ECDF", linecolor = "gray", linewidth=3)
plot!(t -> cdf(D,t), xlabel = "x", ylabel = "CDF vs. ECDF", xlims = (0,5))