Power Generalised Weibull Distribution
Definition
The Power Generalised Weibull (PGW) distribution [2] is a three-parameter distribution with support on ${\mathbb R}_+$. The corresponding hazard function can accommodate bathtub, unimodal and monotone (increasing and decreasing) hazard shapes. The PGW distribution has become popular in survival analysis given the tractability of its hazard and survival functions. Other flexible distributions that can account for these hazard shapes are discussed in @rubio:2021 and @jones:2015.
Probability Density Function
The pdf of the PGW distribution is
\[f(t;\sigma,\nu,\gamma) = \dfrac{\nu}{\gamma \sigma^\nu}t^{\nu-1} \left[ 1 + \left(\dfrac{t}{\sigma}\right)^\nu\right]^{\left(\frac{1}{\gamma}-1\right)} \exp\left\{ 1- \left[ 1 + \left(\dfrac{t}{\sigma}\right)^\nu\right]^{\frac{1}{\gamma}} \right\},\]
where $\sigma>0$ is a scale parameter, and $\nu,\gamma >0$ are shape parameters.
Survival Function
The survival function of the PGW distribution is
\[S(t;\sigma,\nu,\gamma) = \exp\left\{ 1- \left[ 1 + \left(\dfrac{t}{\sigma}\right)^\nu\right]^{\frac{1}{\gamma}} \right\}.\]
Hazard Function
The hazard function of the PGW distribution is
\[h(t;\sigma,\nu,\gamma) = \dfrac{\nu}{\gamma \sigma^\nu}t^{\nu-1} \left[ 1 + \left(\dfrac{t}{\sigma}\right)^\nu\right]^{\left(\frac{1}{\gamma}-1\right)}.\]
The cdf can be obtained as $F(t;\sigma,\nu,\gamma)=1-S(t;\sigma,\nu,\gamma)$, and the cumulative hazard function as $H(t;\sigma,\nu,\gamma) = -\log S(t;\sigma,\nu,\gamma)$, as usual.
Quantile Function
The quantile function of the PGW distribution is
\[Q(p;\sigma,\nu,\gamma) = \sigma \left[ \left( 1 - \log(1-p) \right)^{\gamma} - 1 \right]^{\frac{1}{\nu}},\]
where $p\in(0,1)$.
Examples
Let us sample a dataset from a PGW :
using SurvivalDistributions, Distributions, Random, Plots, StatsBase
Random.seed!(123)
D = PowerGeneralizedWeibull(0.5, 2, 5)
sim = rand(D,1000);
1000-element Vector{Float64}:
1.922872396763498
2.3835766212356995
9.255274320688136
0.6351249402527196
1.9505603134467144
1.2722572420086646
0.2506385088885759
13.23158312319647
2.334297665471983
1.0378766208309282
⋮
0.43804706286323153
49.59681987656546
16.279246464154724
6.206928057792612
1.3104734269960225
11.259460843094017
53.12491029228706
3.477007313348472
0.5697648748324671
First, let's have a look at the hazard function:
plot(t -> hazard(D,t), ylabel = "Hazard", xlims = (0,10))
Then, we can verify the coherence of our code by comparing the obtained sample and the true pdf:
histogram(sim, normalize=:pdf, bins = range(0, 5, length=30))
plot!(t -> pdf(D,t), ylabel = "Density", xlims = (0,5))
We could also compare the empirical and theroetical cdfs:
ecdfsim = ecdf(sim)
plot(x -> ecdfsim(x), 0, 5, label = "ECDF", linecolor = "gray", linewidth=3)
plot!(t -> cdf(D,t), xlabel = "x", ylabel = "CDF vs. ECDF", xlims = (0,5))
- [2]
- M. Nikulin and F. Haghighi. On the power generalized Weibull family: model for cancer censored data. Metron – International Journal of Statistics 67, 75–86 (2009).